Laser-Induced Force on a Microfluidic Drop: Origin and Magnitude

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drop on demand in a microfluidic chip

In this work, we introduce the novel technique of in-chip drop on demand, which consists in dispensing picoliter to nanoliter drops on demand directly in the liquid-filled channels of a polymer microfluidic chip, at frequencies up to 2.5 kHz and with precise volume control. The technique involves a PDMS chip with one or several microliter-size chambers driven by piezoelectric actuators. Individ...

متن کامل

Laser-induced mixing in microfluidic channels.

We demonstrate a novel strategy for mixing solutions and initiating chemical reactions in microfluidic systems. This method utilizes highly focused nanosecond laser pulses from a Q-switched Nd:YAG laser at lambda = 532 nm to generate cavitation bubbles within 100- and 200-microm-wide microfluidic channels containing the parallel laminar flow of two fluids. The bubble expansion and subsequent co...

متن کامل

The effect of confinement-induced shear on drop deformation and breakup in microfluidic extensional flows

Droplets of de-ionized water and four aqueous surfactant solutions were generated in oil using a microfluidic flow-focusing device. The morphological developments of the drops in extensional flow and confinement-induced shear flow at various extension rates were studied using a hyperbolic contraction. This novel approach to droplet deformation within a microfluidic device allowed the probing of...

متن کامل

Drop retention force as a function of drop size.

The force, f, required to slide a drop past a surface is often considered in the literature as linear with the drop width, w, so that f/w = const. Furthermore, according to the Dussan equation for the case that the advancing and receding contact angles are constant with drop size, one can further simplify the above proportionality to f/V(1/3) = const where V is the drop volume. We show, however...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Langmuir

سال: 2009

ISSN: 0743-7463,1520-5827

DOI: 10.1021/la8041605